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What is TSUNAMI?

• Tools for Sensitivity and UNcertainty Analysis 
Methodology Implementation 

• TSUNAMI utilizes first-order-linear perturbation theory to 
produce the sensitivities of a computed keff value to 
constituent cross-section data. 

• The energy-dependent sensitivity data for each reaction 
of each nuclide in a system model can be quickly 
computed using TSUNAMI's 1-D and 3-D analysis tools. 

• These sensitivity data can be coupled with cross-
section-covariance data to produce an uncertainty in keff
due to uncertainties in the evaluated nuclear data. 

• Provides an advanced method to assess system 
similarity based on sensitivity and uncertainty data.
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TSUNAMI Development History
• Current ORNL work in sensitivity and uncertainty (S/U) 

analysis began in 1997
• ORNL had previously performed much S/U work in fast reactor 

analysis in 1970s – 1980s (FORSS)
− Eigenvalue and generalized perturbation theory
− Depletion perturbation theory
− Shielding

• Foundation for current work presented in NUREG/CR-6655 
documents, 1999 (3-year NRC funding)

• Three-dimensional Monte Carlo capability developed  in 1999 
(3–year EMSP funding)

• Additional research is ongoing (DOE NCSP, DOE EM, NRC)
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Perturbation Theory

The relative change in k due to a small perturbation 
in a macroscopic cross section, Σ, of the transport 
operator at some point in phase space r can be 
expressed as
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 = neutron flux; 
φ† = adjoint neutron flux 
k = keff, the largest of the eigenvalues 
A = operator that represents all of the transport equation except for the fission term 
B = operator that represents the fission term of the transport equation 

 = problem-dependent resonance self-shield macroscopic cross sections v 
ξ  = phase space vector; and  

 indicate integration over space, direction and energy variables. 
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TSUNAMI-3D Sequence

• Eigenvalue perturbation theory calculations based 
on KENO V.a multigroup Monte Carlo transport.

• Problem-dependant resonance self-shielded cross 
sections and implicit effect computed with 1D 
continuous energy transport code – CENTRMST.

• Cross section processing, forward and adjoint 
transport calculations, sensitivity coefficient 
generation and uncertainty analysis automatically 
run from a single input.
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TSUNAMI-3D Sequence

− Uses 3D Monte Carlo calculations (KENO V.a) to score spherical 
harmonic moments of forward and adjoint flux:

− Folds forward and adjoint moments to produce nuclide, energy & cross 
section dependent sensitivity profiles by spatial zone:
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• The “explicit” effect is sensitivity of keff to changes in multigroup 
cross sections appearing transport equation

• The “implicit” effect is sensitivity of keff to cross section 
perturbations caused by changes in self-shielding

− Example: perturbation in σ(H) changes self-shielded σ(U238) => cross 
section data may be sensitive to changes in other data

• The implicit effect can be propagated to keff via the chain rule for 
derivatives and combined with the explicit to form the complete 
sensitivity coefficient.

Sα x ;α j
=

Complete Sensitivity Coefficient Includes Effects 
of Changes in Self-Shielded Cross Sections

α j

α x

∂α x

∂α j

αx = shielded cross section
αj = data used in resonance calculation
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Improved Results
by Including Implicit Effect

Nuclide Reaction
Direct 

Perturbation 
Sensitivity

TSUNAMI 
Sensitivity % Diff.

TSUNAMI 
Sensitivity 

(no implicit)
% Diff.

1H total 0.22 0.22 0% 0.29 27%
19F total 0.04 0.04 0% 0.05

0.25

−0.29

235U total 0.25 0.25 0%

18%

0%

238U total -0.21 -0.21 0% 39%

U(2)F4 “Green Blocks” critical experiment
H/X = 294
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Sensitivity for 1H Elastic,
with Implicit Effect
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GeeWiz Input GUI - TSUNAMI-3D
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KENO3D Model Visualization
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HTML Output
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Javapeño for SCALE 5.1
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Applications of TSUNAMI-3D to 
Complex Models

• Burnup Credit Cask Model
• 32 PWR fuel assemblies in flooded cask

• 18 axial burnup zones

• Burned to 40 GWd/MTU; Cooled for 5 years

• BORAL™ plates around each assembly

• Cask filled with water

• Commercial Reactor Criticals (CRC)
• Startup data from PWRs (Crystal River)

• 1/2 core models

• Each pin explicitly modeled with 18 axial zones

• Sensitivity coefficients for ~47,000 nuclides, 
~420,000 44-group profiles
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Uncertainty Propagation

• Uncertainty in keff of a single system
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Procedure to Generate
Covariance Library for Applications

• Process all ENDF/B-VI covariances (49 nuclides)
• ENDF/B-V covariances for 1 nuclide (10B)
• JENDL 3.3 covariances for 7 nuclides
• CENDL 2 covariance for 2 nuclides
• JEF 3.1 covariances for 1 nuclide
• Fission spectrum, χ, data generated for 9 nuclides
• Approximate covariances of other missing nuclides by integral 

measurement uncertainties - Mughabghab data (>250 nuclides)
− σc, σf, υ covariance for E<0.5 eV based thermal data uncertainty, with 

full correlation
− σc, σf covariance for 0.5<E<5E3 eV based on resonance integral, with 

full correlation
− σs covariance for moderators based on uncertainty in potential 

cross section, fully correlated
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Sample SCALE 5.1 Covariance 
Data

Integral Approximation Data ENDF/B-VI Data
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Uncertainty Propagation (con’t)

• Uncertainty in keff for multiple systems
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239Pu Fission Sensitivity

ck=0.91
ck=0.51

EALF=0.04 eV EALF=41.0 eV

EALF=6374 eV
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Trend with ck ≥ 0.8
USL = 0.90

ck = 1.0
is the

application
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Composite Sensitivity Data

• Coverage produced by several experiments can be “built up”
as a composite sensitivity profile.
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Minimum Differences

• Difference between sensitivity profiles for the application 
and the composite show portion of application data that is 
not covered by experiments.
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Penalty Assessment

• Penalty is an additional margin to subcriticality due uncertainty 
in cross sections that are not covered by benchmarks

• Penalty can be assessed by propagating uncovered sensitivity 
data to keff through cross-section-covariance data.

• Calculation is similar keff uncertainty due to cross sections, but 
minimum differences (Za) replace application sensitivities.

Δkeff / keff = ZaCαα Za
†
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Reduced uncertainties

Application Uncertainty
0.77%

Penalty Uncertainty
(due to uncovered sensitivities)

0.20%
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TSURFER
Performs Generalized Linear Least-Squares (GLLS)

Analysis of Design System and Benchmark Data Base

• Systematic procedure to consolidate 
calculations with measured responses

• Computes “best” cross-section adjustments to
minimize differences in computed and
measured benchmark responses

• Propagation of data perturbations to the design 
system response provides estimate of 
computational bias and uncertainty

• Allows correlations in experimental uncertainty
components; filtering of benchmarks based on
similarity; edit of adjusted data and covariances
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Bias Prediction Versus Number of 
Similar Systems (ck > 0.9) in GLLS Adjustment

five design applications (passive) 

included in adjustment
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Reactivity Sensitivity and 
Uncertainty Analysis
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Practical Uses of TSUNAMI

• Validation/Experiment Applicability Studies
− Yucca mountain, Burnup credit, MOX fresh fuel, MOX fuel 

fabrication facility, Poisoned basket studies
• Experiment Design Optimization

− >5 wt-% fuel
• NERI with Areva, Sandia National Laboratories, and 

University of Florida
• 7% Experiments to be assembled at SNL January 2007

− Additional >5% experiment design work for Toshiba
− Space Nuclear Power - General Physics Experiments

• Atomic Energy of Canada, Limited - ACR-1000 Code 
Validation
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Burnup Credit: ck for GBC-32 with 
>1100 Critical Experiments
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Burnup Credit: ck for GBC-32 with 
>1100 Critical Experiments
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Burnup Credit: Rh-103 Sensitivity 
from SNL BUCCX and GBC-32 Cask
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Application to ACR-700 CVR
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ACR-700 Uncertainties

TABLE V 
Response Uncertainties Due to Available Nuclear Data Covariances 

Response Relative Standard 
Deviation (%) 

Multiplication factor for state 1 0.80 
Multiplication factor for state 2 0.84 
Coolant void reactivity (CVR) 49.8 
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ORNL Production-Level S/U 
Capabilities

• Publicly released TSUNAMI tools in SCALE 5.0
• Specifically mentioned in NRC’s ISG-10 for criticality code 

validation
• TSUNAMI training for criticality code validation

− 8 multiday classes taught since 2004, ~150 participants
− 6-hour tutorial presented at 2004 ANS annual meeting
− Next training course in November 2006
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Possible additions to TSUNAMI
• 2D Deterministic Eigenvalue Capability
• Revitalization of ORNL Generalized Perturbation 

Theory Capabilities for Reactor Physics 
Responses
− 1D, 2D, 3D deterministic (refreshed)
− 3D Monte Carlo (new R&D required)

• Resonance self-shielding implicit effect for cell 
homogenization and double-heterogeneity 
calculations

• 2D continuous energy deterministic code for 
resonance self shielding

• Perturbation theory for continuous energy Monte 
Carlo calculations

• Porting codes to large-scale computers
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